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INTERNALLY FINNED annular flow passages have seen 
service in conventional heat-exchanger applications for 
some time fl] and have recently been considered in the 
design of tin-tube radiators for space vehicles [Z]. Such 
flow passages are pictured schematically in the inset of 
Fig. 1, which shows an annular space subdivided by 
radial fins. The fins extend without interruption along the 
axial length of the duct. 

Pressure-drop information for internally finned annular 
ducts appears to be rather limited in extent. Indeed, the 
present authors are aware of only a single prior investiga- 
of the probfem, that one being confined to inurements 
in a duct with radius ratio rl/re = @65 and opening 
angles 8. in the range 8” to 13” ill. Friction-factor results. 
pr&umably corresponding to fully developed flow con: 
ditions, are reported for both the laminar regime and the 
low Reynolds-number portion of the turbulent regime. 
The laminar data appear to correlate satisfactorily with 
the circular-tube friction factor when the equivalent 
diameter is used as the characteristic dimension in the 
Reynolds number. The latter finding is somewhat sur- 
prising inasmuch as the use of the equivalent diameter is 
generally insufficient for correlating laminar-flow friction 
factors for non-circular and circular ducts. 

The solution of equation (3) subject to the above- 
mentioned boundary conditions is conveniently carried 
out by the method of separation of variables and the use 
of linear superposition. Once the u* has been soIved for, 
it may be combined with equation (2); from this, there 
follows the complete solution for the velocity distribution 
in the duct. 

The aim of the present investigation is to obtain a 
complete analytical solution for the fully developed 
laminar flow and pressure drop in internally finned 
annuhr flow passages. The starting point of the analysis 
is the momentum equation for fully developed laminar 
flow 
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It is easily verified that u* must obey Laplace’s equation* 
In addition, u* takes on the values (r74~) (-dp/dz) on 
the boundaries. Then, by introducing the transformation 
of coordinates X = In r/r,, @ = B the annular sector is 
transformed into a rectangular region 0 d X < In 
r2/rl, 0 q 0 < 8,, and the governing equation for u* 
becomes 

e*jax2 + avp = 0 (3) 

On the edges of the rectangle, the boundary values of 
~*~[(~~~~4~) f-d&dz)] are: 1 at X = 0, (v&~)~ at X = 
In r,/rl, eeX at t? = 0 and B = 8,. 

in which u is the axial velocity, z the corresponding axial 
coordinate, and p the static pressure. The radial co- 
ordinate r and the angular coordinate 8 are pictured in 
Fig. 1. For purposes of analysis, consideration may be 
confined to a single flow passage bounded between the 
circular arcs r = rl and r = rq and the rays B = 0 and 
B = 8,. The velocity must be zero on these boundaries 
in accordance with the no-slip condition. 

The velocity solution is facilitated by introducing a 
difference velocity u* defined by 

u* = u -t (r2/4p) (-..dp/dz) (2) 

X = In r/rl, 4 = In rglrl (5) 

The velocity at any position r, 0 may be found by 
numerical evaluation of equation (4). 

The volume flow-rate Q passing through any cross 
section may be determined by integrating the velocity 
distribution 

Q = ‘* J J “ur dr d0. (6) 
0 II 
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Fro. 1. Friction factor results for internally-finned 
annular ducts. 

Upon substituting and carrying out the indicated opera- 
tions, one finds 
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The foregoing provides the relationship between the 
volume flow and the pressure drop. Alternate forms of 
equation (7) may also be obtained by introducing the 
mass flow rate ti = pQ or the mean velocity ?? = Q/A, 
wherein p and A are respectively the density and cross- 
sect ional area. 

It is customary to present the pressure drop results in 
terms of a friction factorfdefined as 

f _ (:I dpidz) D, 
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(8) 

in which De is the equivalent diameter. Upon rearranging 
the definition of .f, there is obtained 

j‘. Re = 

The quantity in brackets is the reciprocal of the flow- 
pressure drop relationship given by equation (7), while 

DC 28, [(r2/r1)* - I] 
_= -_--. (10) 
r1 0, (r.hl + 1) -1. 2 (ry/rl - I) 

By inspection of the foregoing, it is seen that f‘. Re 
depends upon two geometrical parameters, rz/rI and 0,. 

The f. Re product has been numerically evaluated for 
a wide range of values of the governing parameters. 
These results have in part been plotted in Fig. 1 ahd are 
also listed in Table 1 for the smaller values of the 
opening angle 0,. From this presentation, it is seen that 
f. Re ranges from about 14 to 24. On the other hand, 
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Table 1. f. Re results of range of smaller 8, 
_~_..~-~~--_. 

5” 10’ 15” 20” 30” 40” 50’ 60” 
___ __- 

13.42 13.55 1368 13.81 14.03 14.22 14.38 14.52 
14.47 14.49 14.51 14.54 14.59 1462 1466 14.69 
16.34 16G4 15.79 15.57 15.21 14.94 14.75 14.65 
17.80 17.07 16.47 I598 15.24 14.78 14.54 14.47 
18.75 17.51 16.56 15.84 14.90 14.48 14.38 1449 
19.14 17.37 16.13 15.30 14.47 14.33 14.52 14.88 
18.94 16.68 15.35 14.64 14.29 14.60 15.14 15.72 
18.60 1616 14.91 14.38 144.0 14.97 15.65 16.32 
18.08 15.56 14.52 14.26 14.71 15.52 16.33 17.04 
16.42 14.42 14.33 14.84 16.15 17.28 18.16 18.86 
15.32 14.26 14.91 15.82 17.39 18.52 19.34 19.95 
14.35 14.98 16.36 17.51 19.07 20.05 20.71 21.18 
15.06 1762 19.17 20.14 21.26 21.88 22.28 22.56 
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f. Re = 16 for the circular tube. It follows, therefore, for this lies in the fact that f. Re not only includes flow- 
that the tube results are not applicable to internally related quantities, but also includes geometrical quantities. 
finned annular ducts of arbitrary geometrical configura- As the parameters are varied, some of these quantities 
tion. However, it may be noted that for conditions may increase and others may decrease, thereby providing 
corresponding to the experiments of reference Ill, the the possibility of maxima and minima. 
present analysis predicts f. Re - 155-17.5. It is thus 
seen that there are swial situations in which the results 
for the finned annulus are close to those of the circular 
tube. As chance would have it, just such a case was I. 
studied in reference [l]. 
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